Continuous measurements of O₂:CO₂ flux exchange ratios above a cropland in central Germany Christian Markwitz¹, Edgar Tunsch¹, Andrew Manning², Penelope Pickers², Alexander Knohl¹ ¹ Bioclimatology, University of Göttingen, Germany ² School of environmental Sciences, University of East Anglia, UK # O₂ fluxes at ecosystem scale From studies in forest ecosystems we know that O₂:CO₂ exchange ratios can - → be different than the expected 1:1 relationship (Hilman et al. 2016, 2019) - → differ for different ecosystem components (Ishidoya et al. 2013) - → be used for partitioning net fluxes into photosynthesis and respiration (Ishidoya et al. 2015, Faassen et al. 2023) # O₂ fluxes at ecosystem scale From studies in forest ecosystems we know that O₂:CO₂ exchange ratios can - → be different than the expected 1:1 relationship (Hilman et al. 2016, 2019) - → differ for different ecosystem components (Ishidoya et al. 2013) - → be used for partitioning net fluxes into photosynthesis and respiration (Ishidoya et al. 2015, Faassen et al. 2023) O₂:CO₂ ratio of net flux from agricultural sites yet largely unknown #### **Objectives** 1) To estimate O₂:CO₂ exchange ratios from mole fraction measurements at different time scales from a agricultural field. ### **Objectives** - 1) To estimate O₂:CO₂ exchange ratios from mole fraction measurements at different time scales from a agricultural field. - 2) To assess O₂ fluxes above the agricultural field using the flux-gradient approach for estimating flux-based O₂:CO₂ exchange ratios. ## O₂:CO₂ exchange ratios (ER) and flux estimates 1) $$ER = \frac{\mathrm{d}O_2}{\mathrm{d}CO_2}$$ O_2 - mole fraction (μ mol mol⁻¹)* CO₂ - mole fraction (μmol mol⁻¹) * deviation from a reference mole fraction $$ER_{flux} = \frac{F_{O_2}}{F_{CO_2}}$$ F_{O2} , $F_{CO2} - O_2$ or CO_2 flux (µmol m⁻² s⁻¹) #### O₂:CO₂ exchange ratios (ER) and flux estimates 1) $$ER = \frac{\mathrm{d}O_2}{\mathrm{d}CO_2}$$ - mole fraction (μmol mol⁻¹)* CO₂ - mole fraction (μmol mol⁻¹) * deviation from a reference mole fraction $$ER_{flux} = \frac{F_{O_2}}{F_{CO_2}}$$ F_{02} , $F_{C02} - O_2$ or CO_2 flux (µmol m⁻² s⁻¹) # Flux-gradient approach: $F_{\Phi} = -K_{\Phi} \frac{\partial \Phi}{\partial \gamma}$ $$F_{\Phi} = -K_{\Phi} \frac{\partial \Phi}{\partial z}$$ 1) with K_{σ} from Monin-Obukhov similarity: $$K = \frac{u^* k (z - d)}{\phi_{\rm m}}$$ 2) ... or $K_{02} = K_{002}$ (trace gas similarity): $$K_{O_2} = K_{CO_2}$$ $F_{O_2} = F_{CO_2} \frac{\Delta O_2}{\Delta CO_2}$ → required: CO₂-flux from eddy covariance and vertical gradient of O₂ and CO₂ mole fraction Photo by Ana Meijide Photo by Ana Meijide #### Reinshof (DE-Rns Fluxnet site) - monocropping agricultural system with annually varying crop rotation (2023 → sugar beet; 2024 → winter wheat) - **conventional soil cultivation** (deep tillage, fertilisation) FC-2 Differential Oxygen Analyzer (Oxzilla) FC-2 Differential Oxygen Analyzer (Oxzilla) LI-820 CO₂ gas analyser (LI-COR) FC-2 Differential Oxygen Analyzer (Oxzilla) LI-820 CO₂ gas analyser (LI-COR) LI-820 CO₂ gas analyser (LI-COR) 'Blue-box' with calibration cylinders - Air dried < 1 ppm H₂O_v - Flow rate: 0.1 lpm - Each height measured for a duration of 10 minutes ### Daily O₂:CO₂ exchange ratios and greenness index ER_{.tt}=-1.11 ER_{nt}=-1.17 ER based on **slope** between mole fractions (top height) - → ER ~ -1.0 during vegetation period - \rightarrow winter time ER probably affected by fossil fuel sources # Daily O₂ and CO₂ flux estimates - → O₂- and CO₂ fluxes are negatively correlated - \rightarrow O₂-flux from K-theory shows lower O₂ fluxes than O₂-flux from trace gas similarity (Slope=0.88, R²=0.61) - → CO₂-flux from K-theory indicates lower CO₂ uptake than EC (Slope=0.74, R²=0.61) #### Mean diel cycles of fluxes and ER Entire study period: 2023 and 2024 #### Mean diel cycles of fluxes and ER Entire study period: 2023 and 2024 # Half-hourly O₂:CO₂ flux exchange ratios ER based on flux estimates (running median) and slope - → ER_{flux} and ER show similar trend - → But, what about low negative ER? #### Stability vs. CO mole fraction and ER measurements - → CO mole fraction highest during neutral/ stable stratification - \rightarrow ER_{flux} < -1.5 corresponds to near neutral/ stable conditions - => measurements were potentially influenced by anthropogenic emissions and/or low fluxes #### **Conclusions** - High-precision O₂ continuous measurement are possible at agricultural field - O₂ and CO₂ fluxes anticorrelated - Obtained ER comparable to literature for forests - Summertime ER more robust and at an expected range - Wintertime ER has large scatter and potentially affected by fossil fuel sources and/or low fluxes #### Acknowledgements GEFÖRDERT VON Niedersächsisches Ministerium für Wissenschaft und Kultur **ERC CoG Oxyflux** 2025-04-30 | EGU 2025 Vienna 25 #### Measurements #### Air-conditioned trailer wind speed and wind direction eddy covariance of N₂O, CO₂, H₂O, __ water isotopes and energy fluxes O₂, CO₂ and H₂O mole fractions at 0.5, 1 and 3 m radiation (LW, SW, diffuse, PPFD) air temperature, humidity and pressure soil temperature, moisture and heat flux # O₂ fuel cell analyser measuring principle **Active temperature control** The analyser uses <u>fuel cell</u> technology to measure \underline{O}_2 mole fraction via <u>electrochemical reactions</u> within the cells: $$O_2 + 4H^+ + 4e \rightarrow 2H_2O$$ [cathode] $2Pb + 2H_2O \rightarrow 2PbO + 4H^+ + 4e$ [anode] where the change in potential difference between the anode and cathode is proportional to the partial pressure of $\rm O_2$ in the air stream. 2025-04-30 | EGU 2025 Vienna 27 ## O₂ and CO₂ complete measurement system #### Three units - Drying unit - Measurement unit - Calibration unit 2025-04-30 | EGU 2025 Vienna 28 # O₂ 'per meg' unit We report O₂ concentrations as O₂/N₂ ratios - assume N₂ is constant - introduce a new unit: 'per meg' per meg is defined as: $$\delta(O_2/N_2) = \left(\frac{(O_2/N_2)_{sample} - (O_2/N_2)_{ref}}{(O_2/N_2)_{ref}}\right) \times 10^6$$ Why do we use this? **Lange 1** because O₂ mole fraction is affected by variability in other trace constituents 'Zero' per meg defined arbitrarily as O_2/N_2 value in an air sample in 1988. For comparison purposes (to compare per meg O₂ with ppm CO₂), 4.8 per meg O₂ 1 ppm CO₂ EGU 2025 Vienna 2025-04-30 #### Instrument performance # Timeseries of O₂ and CO₂ mole fractions → O₂ and CO₂ mole fractions are anticorrelated # Exchange ratios from O₂ and CO₂ mole fraction July 2023 ER based on **slope** between mole fractions \rightarrow O₂:CO₂ exchange ratio of -1.02 to -1.06 mol mol⁻¹, similar to other studies in forests (Ishidoya et al. 2013, Battle et al. 2019, Faassen et al. 2023) ### Daily O₂:CO₂ exchange ratios during the vegetation period ### Mean diel cycles of fluxes for various months # Mean diel cycles of O₂:CO₂ exchange ratios for various months