

Continuous measurements of O₂:CO₂ flux exchange ratios above a cropland in central Germany

Christian Markwitz¹, Edgar Tunsch¹, Andrew Manning², Penelope Pickers², Alexander Knohl¹

¹ Bioclimatology, University of Göttingen, Germany

² School of environmental Sciences, University of East Anglia, UK

O₂ fluxes at ecosystem scale

From studies in forest ecosystems we know that O₂:CO₂ exchange ratios can

- → be different than the expected 1:1 relationship (Hilman et al. 2016, 2019)
- → differ for different ecosystem components (Ishidoya et al. 2013)
- → be used for partitioning net fluxes into photosynthesis and respiration (Ishidoya et al. 2015, Faassen et al. 2023)

O₂ fluxes at ecosystem scale

From studies in forest ecosystems we know that O₂:CO₂ exchange ratios can

- → be different than the expected 1:1 relationship (Hilman et al. 2016, 2019)
- → differ for different ecosystem components (Ishidoya et al. 2013)
- → be used for partitioning net fluxes into photosynthesis and respiration (Ishidoya et al. 2015, Faassen et al. 2023)

O₂:CO₂ ratio of net flux from agricultural sites yet largely unknown

Objectives

1) To estimate O₂:CO₂ exchange ratios from mole fraction measurements at different time scales from a agricultural field.

Objectives

- 1) To estimate O₂:CO₂ exchange ratios from mole fraction measurements at different time scales from a agricultural field.
- 2) To assess O₂ fluxes above the agricultural field using the flux-gradient approach for estimating flux-based O₂:CO₂ exchange ratios.

O₂:CO₂ exchange ratios (ER) and flux estimates

1)
$$ER = \frac{\mathrm{d}O_2}{\mathrm{d}CO_2}$$

 O_2 - mole fraction (μ mol mol⁻¹)*

CO₂ - mole fraction (μmol mol⁻¹)

* deviation from a reference mole fraction

$$ER_{flux} = \frac{F_{O_2}}{F_{CO_2}}$$

 F_{O2} , $F_{CO2} - O_2$ or CO_2 flux (µmol m⁻² s⁻¹)

O₂:CO₂ exchange ratios (ER) and flux estimates

1)
$$ER = \frac{\mathrm{d}O_2}{\mathrm{d}CO_2}$$

- mole fraction (μmol mol⁻¹)*

CO₂ - mole fraction (μmol mol⁻¹)

* deviation from a reference mole fraction

$$ER_{flux} = \frac{F_{O_2}}{F_{CO_2}}$$

 F_{02} , $F_{C02} - O_2$ or CO_2 flux (µmol m⁻² s⁻¹)

Flux-gradient approach: $F_{\Phi} = -K_{\Phi} \frac{\partial \Phi}{\partial \gamma}$

$$F_{\Phi} = -K_{\Phi} \frac{\partial \Phi}{\partial z}$$

1) with K_{σ} from Monin-Obukhov similarity:

$$K = \frac{u^* k (z - d)}{\phi_{\rm m}}$$

2) ... or $K_{02} = K_{002}$ (trace gas similarity):

$$K_{O_2} = K_{CO_2}$$

 $F_{O_2} = F_{CO_2} \frac{\Delta O_2}{\Delta CO_2}$

→ required: CO₂-flux from eddy covariance and vertical gradient of O₂ and CO₂ mole fraction

Photo by Ana Meijide

Photo by Ana Meijide

Reinshof (DE-Rns Fluxnet site)

- monocropping agricultural system with annually varying crop rotation (2023 → sugar beet; 2024 → winter wheat)
- **conventional soil cultivation** (deep tillage, fertilisation)

FC-2 Differential Oxygen Analyzer (Oxzilla)

FC-2 Differential Oxygen Analyzer (Oxzilla)

LI-820 CO₂ gas analyser (LI-COR)

FC-2 Differential Oxygen Analyzer (Oxzilla)

LI-820 CO₂ gas analyser (LI-COR)

LI-820 CO₂ gas analyser (LI-COR)

'Blue-box' with calibration cylinders

- Air dried < 1 ppm H₂O_v
- Flow rate: 0.1 lpm
- Each height measured for a duration of 10 minutes

Daily O₂:CO₂ exchange ratios and greenness index

ER_{.tt}=-1.11

ER_{nt}=-1.17

ER based on **slope** between mole fractions (top height)

- → ER ~ -1.0 during vegetation period
- \rightarrow winter time ER probably affected by fossil fuel sources

Daily O₂ and CO₂ flux estimates

- → O₂- and CO₂ fluxes are negatively correlated
- \rightarrow O₂-flux from K-theory shows lower O₂ fluxes than O₂-flux from trace gas similarity (Slope=0.88, R²=0.61)
- → CO₂-flux from K-theory indicates lower CO₂ uptake than EC (Slope=0.74, R²=0.61)

Mean diel cycles of fluxes and ER

Entire study period: 2023 and 2024

Mean diel cycles of fluxes and ER

Entire study period: 2023 and 2024

Half-hourly O₂:CO₂ flux exchange ratios

ER based on flux estimates (running median) and slope

- → ER_{flux} and ER show similar trend
- → But, what about low negative ER?

Stability vs. CO mole fraction and ER measurements

- → CO mole fraction highest during neutral/ stable stratification
- \rightarrow ER_{flux} < -1.5 corresponds to near neutral/ stable conditions
- => measurements were potentially influenced by anthropogenic emissions and/or low fluxes

Conclusions

- High-precision O₂ continuous measurement are possible at agricultural field
- O₂ and CO₂ fluxes anticorrelated
- Obtained ER comparable to literature for forests
- Summertime ER more robust and at an expected range
- Wintertime ER has large scatter and potentially affected by fossil fuel sources and/or low fluxes

Acknowledgements

GEFÖRDERT VON

Niedersächsisches Ministerium für Wissenschaft und Kultur

ERC CoG Oxyflux

2025-04-30 | EGU 2025 Vienna 25

Measurements

Air-conditioned trailer

wind speed and wind direction

eddy covariance of N₂O, CO₂, H₂O, __ water isotopes and energy fluxes

O₂, CO₂ and H₂O mole fractions at 0.5, 1 and 3 m

radiation
(LW, SW,
diffuse, PPFD)

air temperature, humidity and pressure

soil temperature, moisture and heat flux

O₂ fuel cell analyser measuring principle

Active temperature control

The analyser uses <u>fuel cell</u> technology to measure \underline{O}_2 mole fraction via <u>electrochemical reactions</u> within the cells:

$$O_2 + 4H^+ + 4e \rightarrow 2H_2O$$
 [cathode]
 $2Pb + 2H_2O \rightarrow 2PbO + 4H^+ + 4e$ [anode]

where the change in potential difference between the anode and cathode is proportional to the partial pressure of $\rm O_2$ in the air stream.

2025-04-30 | EGU 2025 Vienna 27

O₂ and CO₂ complete measurement system

Three units

- Drying unit
- Measurement unit
- Calibration unit

2025-04-30 | EGU 2025 Vienna 28

O₂ 'per meg' unit

We report O₂ concentrations as O₂/N₂ ratios

- assume N₂ is constant
- introduce a new unit: 'per meg'

per meg is defined as:

$$\delta(O_2/N_2) = \left(\frac{(O_2/N_2)_{sample} - (O_2/N_2)_{ref}}{(O_2/N_2)_{ref}}\right) \times 10^6$$

Why do we use this?

Lange 1 because O₂ mole fraction is affected by variability in other trace constituents

'Zero' per meg defined arbitrarily as O_2/N_2 value in an air sample in 1988.

For comparison purposes (to compare per meg O₂ with ppm CO₂),

4.8 per meg O₂ 1 ppm CO₂

EGU 2025 Vienna 2025-04-30

Instrument performance

Timeseries of O₂ and CO₂ mole fractions

→ O₂ and CO₂ mole fractions are anticorrelated

Exchange ratios from O₂ and CO₂ mole fraction July 2023

ER based on **slope** between mole fractions

 \rightarrow O₂:CO₂ exchange ratio of -1.02 to -1.06 mol mol⁻¹, similar to other studies in forests (Ishidoya et al. 2013, Battle et al. 2019, Faassen et al. 2023)

Daily O₂:CO₂ exchange ratios during the vegetation period

Mean diel cycles of fluxes for various months

Mean diel cycles of O₂:CO₂ exchange ratios for various months

